Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The modulus and amplitude of $\frac{ 1 + 2i}{1 - (1 - i)^2}$ are respectively

COMEDKCOMEDK 2008Complex Numbers and Quadratic Equations

Solution:

Let $Z = \frac{ 1 + 2i}{1 - (1 - i)^2} $
$= \frac{1+2i}{1-\left(1 + i^{2} - 2i\right)} = \frac{1+2i}{1+2i} = 1 \Rightarrow Z = 1 + 0i $
Now, put $1 = r \cos \theta , 0 = r \sin \theta$
$ r= \sqrt{1+0} = 1 \Rightarrow \left|Z\right| = \sqrt{a^{2} + b^{2}} = \sqrt{1^{2}+0} = 1 $
$\therefore \:\:\: \tan \theta = 0 \Rightarrow \theta = 0 $
$ \therefore $ Modulus is 1 and amplitude is 0.