Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The minimum value of $ z = 2x_1 + 3x_2 $ subject to the constraints $ 2x_1 +7x_2\geq 22 $ , $ x_1+x_2\ge6,5x_1+x_2\geq 10 $ and $ x_1 ,x_2 \ge 0 $ is

AMUAMU 2018

Solution:

We have, $z=2 x_{1}+3 x_{2}$ Subject to the constraints
$2 x_{1}+7 x_{2} \geq 22 $
$x_{1}+x_{2} \geq 6 $
$5 x_{1}+x_{2} \geq 10$
$x_{1}, x_{2} \geq 0$
The graph of inequalities are
image
The feasible region are $A B C D$
Corner points $X = 2x_1 + 3x_2$
A A (11, 0) i 22 + 0 = 22
B B(4, 2 ) ii 8 + 6 = 14
C C(1, 5) iii 2 + 15 = 17
D D ( 0, 10) iv 0 + 30 = 30

Minimum value of $Z$ ia $14$