Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The minimum value of $x$ which satisfies the inequality $\left(s i n^{- 1} x\right)^{2}\geq \left(c o s^{- 1} x\right)^{2}$ is

NTA AbhyasNTA Abhyas 2022

Solution:

Solution
$\left(s i n^{- 1} x\right)^{2}-\left(c o s^{- 1} x\right)^{2}\geq 0$
$\left(s i n^{- 1} x + c o s^{- 1} x\right)\left(s i n^{- 1} x - c o s^{- 1} x\right)\geq 0$
$\Rightarrow sin^{- 1}x\geq cos^{- 1}x$
Clearly from graph
$x\in \left[\frac{1}{\sqrt{2}} , 1\right]$