Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The minimum value of the function $f\left(x\right)=\frac{tan x}{3 + 2 tan ⁡ x}, \, \forall x\in \left[0 , \frac{\pi }{2}\right)$ is

NTA AbhyasNTA Abhyas 2022

Solution:

If $x \in\left[0, \frac{\pi}{2}\right), \tan x \in[0, \infty)$
Let, $\tan x=t$
$ \begin{array}{l} \text { i.e. } y=\frac{t}{3+2 t}, t \in[0, \infty) \\ \Rightarrow 3 y+2 t y=t \\ \Rightarrow t=\frac{3 y}{1-2 y} \geq 0 \\ \Rightarrow y \in\left[0, \frac{1}{2}\right) \end{array} $
Hence, the minimum value of the function $=0$