$f(x)=e^{\left(x^{4}-x^{3}+x^{2}\right)}, f^{'}(x)=e^{x^{4}-x^{3}+x^{2}}$
$\left(4 x^{3}-3 x^{2}+2 x\right)$
$\Rightarrow f(x)$ is decreasing for $x < 0$,
increasing for $x > 0$.
$\therefore $ Minimum is at $x=0$
Hence, minimum value of
$f(x)=f(0)=e^{0}=1$