Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The minimum value of $4^{x}+4^{1-x}, x \in R$ is

Solution:

A. $M \geq G \cdot M$
$\Rightarrow \frac{4^{x}+4^{1-x}}{2} \geq \sqrt{4^{x} \cdot 4^{1-x}}$
$\frac{4^{x}+4^{1-x}}{2} \geq \sqrt{4^{x} \cdot \frac{4}{4^{x}}}$
$ \Rightarrow 4^{x}+4^{1-x} \geq 4$