Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The minimum value of $2^{\sin\, x} + 2^{\cos\, x}$ is

WBJEEWBJEE 2014

Solution:

We know that
$AM \geq GM$
$\therefore \frac{2^{\sin x}+2^{\cos x}}{2} \geq \sqrt{2^{\sin x} 2^{\cos x}}$
$\Rightarrow 2^{\sin x}+2^{\cos x} \geq 2 \sqrt{2^{\sin x+\cos x}}$
$\Rightarrow 2^{\sin x}+2^{\cos x} \geq 2 \times 2^{\frac{\sin x+\cos x}{2}}$
$\Rightarrow 2^{\sin x}+2^{\cos x} \geq 2^{1+\frac{\sin x+\cos x}{2}}$
But $\sin x+\cos x=\sqrt{2} \sin \left(x+\frac{\pi}{4}\right) \geq-\sqrt{2}$
$\therefore 2^{\sin x}+2^{\cos x} \geq 2^{1-\frac{\sqrt{2}}{2}}$
$\Rightarrow 2^{\sin x}+2^{\cos x} \geq 2^{1-\frac{1}{\sqrt{2}}}, \forall x \in R$
Hence, minimum value is$2^{1-\frac{1}{2}}$