Equation of tangent at $(a \cos \theta, b \sin \theta)$ to the ellipse is
$\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$
Coordinates of $P$ and $Q$ are
$\left(\frac{a}{\cos \theta}, 0\right)$ and $\left(0, \frac{b}{\sin \theta}\right)$, respectively.
Now, area of
$\Delta O P Q=\frac{1}{2}\left|\frac{a}{\cos \theta} \times \frac{b}{\sin \theta}\right|=\frac{a b}{|\sin 2 \theta|}$
$\therefore $ Minimum area $=a b$