Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The metallic bob of simple pendulum has the relative density 5. The time period of this pendulum is $10 \,s$. If the metallic bob is immersed in water, then the new time period becomes $5 \sqrt{x} \,s$. The value of $x$ will be

JEE MainJEE Main 2022Oscillations

Solution:

image
$ g ^{\prime}=\frac{ mg - F _{ B }}{ m } $
$ =\frac{\rho_{ B } V g-\rho_{ w } V g}{\rho_{ B } V }$
$ =\left(\frac{\rho_{ B }-\rho_{ w }}{\rho_{ B }}\right) g $
$T =2 \pi \sqrt{\frac{\ell}{ g }} $
$=\frac{5-1}{5} \times g $
$ =\frac{4}{5} g $
$ \frac{ T ^{\prime}}{ T }=\sqrt{\frac{ g }{ g ^{\prime}}}=\sqrt{\frac{ g }{\frac{4}{5} g }}=\sqrt{\frac{5}{4}} $
$ T ^{\prime}= T \sqrt{\frac{5}{4}}=\frac{10}{2} \sqrt{5} $
$ T ^{\prime}=5 \sqrt{5}$