Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The mean of following frequency table is $50$.
Class Frequency
$0 -20$ $17$
$20-40$ $f_1$
$40-60$ $32$
$60-80$ $f_2$
$80 - 100$ $19$
Total $120$

The missing frequencies are

Statistics

Solution:

We have,
Mid point
$(x)$
Frequency
$(f)$
$fx$
$10$ $17$ $170$
$30$ $f_1$ $30\,f_1$
$50$ $32$ $1600$
$70$ $f_2$ $70\,f_2$
$90$ $19$ $1710$
Total $120$ $30\,f_1+70\,f_2+3480$

Now, $\bar{x} = \frac{1}{120}\,\Sigma fx$
$\Rightarrow 50 = \frac{1}{120} \times \left(30\,f_{1}+70\,f_{2}+3480\right)$
$\Rightarrow 600 = 3\,f_{1}+7\,f_{2}+348$
$\Rightarrow 3\,f_{1}+7\,f_{2}=252\quad\ldots\left(i\right)$
Also, $f_{1} + f_{2} + 68 = 120$
$\Rightarrow f_{1} + f_{2} = 52\quad\ldots\left(ii\right)$
Solving $\left(i\right)$ and $\left(ii\right)$, we get $f_{1} = 28$, $f_{2} = 24$