Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The mean and variance of 10 observations were calculated as 15 and 15 respectively by a student who took by mistake 25 instead of 15 for one observation. Then, the correct standard deviation is ______

JEE MainJEE Main 2022Statistics

Solution:

$ n =10, \bar{x}=\frac{\sum x_i}{10}=15 $
$6^2=\frac{\sum x_i^2}{10}-(\bar{x})^2=15 $
$ \Rightarrow \displaystyle\sum_{i=1}^{10} x_i=150$
$ \Rightarrow \displaystyle\sum_{i=1}^9 x_i+25=150 $
$ \Rightarrow \displaystyle\sum_{i=1}^9 x_i=125 $
$ \Rightarrow \displaystyle\sum_{i=1}^9 x_i+15=140$
Actual mean $=\frac{140}{10}=14=\bar{x}_{\text {new }} $
$\displaystyle\sum_{i=1}^9 \frac{x_i^2+25^2-15^2}{10}=15$
$ \Rightarrow \displaystyle\sum_{i=1}^9 x_i^2+625=2400$
$ \displaystyle\sum_{i=1}^9 x_i^2=1775 $
$\displaystyle \sum_{i=1}^9 x_i^2+15^2=2000=\left(\sum x_i^2\right)_{\text {actual }} $
$ 6_{\text {actual }}^2=\frac{\left(\sum x_i^2\right)_{\text {actual }}-\left(\bar{x}_{\text {new }}\right)^2}{10} $
$ =\frac{2000}{10}-14^2$
$ =200-196=4 $
(S.D) actual $=6=2$