Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The mean and standard deviation of some data for the time taken to complete test calculated with the following results
Number of observations $=25$,
Mean $=18.2$
Standard deviation $=3.25$
Further, another set of $15$ observations $x_1, x_2, \ldots, x_n$ also in seconds, is now available and we have
$\displaystyle\sum_{i=1}^{n=15} x_i=279$ and $\displaystyle\sum_{i=1}^{15} x_i^2=5524$. The standard deviation based on all 40 observations is

Statistics

Solution:

$n=25, \bar{x}_1=18.2, \sigma_1=3.25$ and
$n=15, \displaystyle\sum_{i=1}^{15} \bar{x}_i=279, \displaystyle\sum_{i=1}^{15} x_i^2=5524$
For first set
$\Sigma x_i =25 \times 18.2=455 $
$\sigma_1^2 =\frac{\Sigma x_i^2}{25}-(18.2)^2$
$\Rightarrow (3.25)^2 =\frac{\Sigma x_i^2}{25}-331.24$
$\Rightarrow 10.5625+331.24 =\frac{\Sigma x_i^2}{25} $
$\Rightarrow \Sigma x_i^2 =25 \times 341.8025=8545.0625$
For required standard deviation, $n=40$
Combined sum of squares of two data
$\Sigma x_i^2=8545.0625+5524=14069.0625$
Combined sum of two data, $\Sigma x_i=455+279=734$
$\therefore $ Standard deviation $(\sigma) =\sqrt{\frac{14069.0625}{40}-\left(\frac{734}{40}\right)^2} $
$=\sqrt{351.726-(18.35)^2} =\sqrt{351.726-336.7225}$
$=\sqrt{15.0035}=3.87$