Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The maximum value of P such that 3P divides 99 × 97 × 95 × ldots × 51 is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The maximum value of $P$ such that $3^{P}$ divides $99 \times 97 \times$ $95 \times \ldots \times 51$ is
Permutations and Combinations
A
11
B
14
C
13
D
12
Solution:
$ 99 \times 97 \times 95 \times \ldots \times 51 $
$= \frac{100 !}{(100 \times 98 \times 96 \times \ldots \times 52)} \times \frac{1}{50 !}$
$=\frac{100 ! \times 25 !}{2^{25} \times 50 ! \times 50 !} $
maximum power of $3$ in $100 !$
$=\left[\frac{100}{3}\right]+\left[\frac{100}{9}\right]+\left[\frac{100}{27}\right]+\left[\frac{100}{81}\right] $
$=33+11+3+1=48$
maximum power of $3$ in $50 !$
$=\left[\frac{50}{3}\right]+\left[\frac{50}{9}\right]+\left[\frac{50}{27}\right] $
$=16+5+1=22$
maximum power of $3$ in $25 !$
$=\left[\frac{25}{3}\right]+\left[\frac{25}{9}\right] $
$=8+2=10$
$\therefore $ Exponent of $3=48+10-(22 \times 2)$
$=14$