Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The maximum value of $2x + y$ subject to $3x + 5y \leq 26$ and $5x + 3y \leq 30, x \geq 0, y \geq 0$ is

MHT CETMHT CET 2018

Solution:

We have, Maximize
$Z=2 x+y$
Subject to constraints
$3 x+5 y \leq 26$
$5 x+3 y \leq 30 $
$x \geq 0, y \geq 0$
The graph of inequality are
image
Corner points $ Z = 2x + y$
$(0 , 0)$ $Z = 0$
$(0, \frac{26}{5})$ $Z = \frac{26}{5} = 5.2$
$(6, 0)$ $ Z = 12$ (Maximum)
$( \frac{9}{2}, \frac{5}{2})$ $ Z = \frac{18}{2} + \frac{5}{2} = \frac{23}{2} = 11.5$

Maximum value $Z = 12$