Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
The maximum particle velocity in a wavemotion is half the wave velocity. Then the amplitude of the wave is equal to
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The maximum particle velocity in a wavemotion is half the wave velocity. Then the amplitude of the wave is equal to
KCET
KCET 2007
Waves
A
$ \lambda$
7%
B
$\frac {\lambda}{2 \pi}$
28%
C
$\frac {2\lambda}{\pi}$
11%
D
$\frac {\lambda}{4 \pi}$
53%
Solution:
For a wave,
$y = a \sin \frac{2\pi}{\lambda} \left(vt - x\right)\,\,\,\,\dots(i)$
Differentiating Eq (i) w.r.t. t, we get
$ \frac{dy}{dt} = \frac{2\pi va}{\lambda} \cos \frac{2\pi}{\lambda} \left(vt -x\right) $
Now, maximum velocity is obtained when
$\cos \frac{2\pi}{\lambda} \left(vt -x\right) =1 $
$\therefore v_{max } = \left(\frac{dy}{dt}\right)_{max } = \frac{2\pi v a}{\lambda} $
but $v_{max } = \frac{v}{2} $ (given)
$\therefore \frac{v}{2} = \frac{2\pi va}{\lambda}$
$ \Rightarrow a = \frac{\lambda}{4\pi} $