For possible interference maxima on the screen, the condition is
$d \sin \theta=n \lambda$ ...(i)
Given : $d=$ slit - width $=2 \lambda$
$\therefore 2 \lambda \sin \theta =n \lambda$
$\Rightarrow 2 \sin \theta =n$
The maximum value of $\sin \theta$ is 1 , hence, $n=2 \times 1=2$
Thus, Eq. (i) must be satisfied by 5 integer values ie, $-2,-1,0,1,2$. Hence, the maximum number of possible interference maxima is $5 .$