The area of a rectangle inscribed in a circle is maximum, when it is a square
The area of a rectangle inscribed in a circle is maximum, when it is a square.
$\Rightarrow (\text { diagonal })^{2}=(\text { side })^{2}+(\text { side })^{2}$
$\Rightarrow $ (diameter) $^{2}=2$ (side) $^{2}$
(because diagonal = diameter)
$\Rightarrow \frac{(16)^{2}}{2}=(\text { side })^{2}$
$\therefore $ Area $=128$ sq. units