Thank you for reporting, we will resolve it shortly
Q.
The mass density of a planet of radius $R$ varies with the distance $r$ from its centre as $\rho( r )=\rho_{0}\left(1-\frac{ r ^{2}}{ R ^{2}}\right) $ Then the gravitational field is maximum at :
$ E \,4 \pi r ^{2}=\int \rho_{0} \,4 \pi r ^{2} \,dr$
$\Rightarrow Er ^{2}=4 \pi G \int\limits_{0}^{ r } \rho_{0}\left(1-\frac{ r ^{2}}{ R ^{2}}\right) r ^{2} dr$
$\Rightarrow E =4 \pi G \rho_{0}\left(\frac{ r ^{3}}{3}-\frac{ r ^{5}}{5 R ^{2}}\right)$
$\frac{ dE }{ dr }=0$
$ \therefore r =\sqrt{\frac{5}{9}} \,R$