Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The magnitude of the sum of the two vectors is equal to the difference of their magnitudes, the angle between the vectors is,

NEETNEET 2016Motion in a Plane

Solution:

Let the two vectors be $\vec{A}$ and $\vec{B}$ with magnitudes $A$ and $B$ respectively. Then magnitude of their sum is given by:
$|\overrightarrow{ A }+\overrightarrow{ B }|=\sqrt{ A ^{2}+ B ^{2}+2 AB \cos \theta} \rightarrow(1)(\theta=$ angle between the vectors $)$
Magnitude of their difference is given by:
$|\overrightarrow{ A }-\overrightarrow{ B }|=\sqrt{ A ^{2}+ B ^{2}-2 AB \cos \theta} \rightarrow(2)$
As $|\overrightarrow{ A }+\overrightarrow{ B }|=|\overrightarrow{ A }-\overrightarrow{ B }|$
$\Rightarrow A ^{2}+ B ^{2}+2 AB \cos \theta= A ^{2}+ B ^{2}-2 AB \cos \theta$
$\Rightarrow 4 AB \cos \theta=0$ or $\cos \theta=0$
$\Rightarrow \theta=90^{\circ} .$