Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
The magnitude and direction of the electric field at point P can be best represented by <img class=img-fluid question-image alt=Question src=https://cdn.tardigrade.in/q/nta/p-3h6c0palvyuv.png />
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The magnitude and direction of the electric field at point $P$ can be best represented by
NTA Abhyas
NTA Abhyas 2020
Electrostatic Potential and Capacitance
A
$\frac{3 k q}{x^{2}}\left(\right.\hat{i}+\hat{j}\left.\right)$
5%
B
$\frac{\sqrt{2} k q}{x^{2}}\left(\right.\hat{i}+\hat{j}\left.\right)$
7%
C
$\frac{3 \sqrt{2} k q}{x^{2}}\left(\right.-\hat{i}-\hat{j}\left.\right)$
12%
D
$\frac{3 \sqrt{2} k q}{x^{2}}\left(\right.\hat{i}+\hat{j}\left.\right)$
77%
Solution:
$\overset{ \rightarrow }{E}_{P}=E′cos45^\circ \hat{i}+E′sin45^\circ \hat{j}$
$= \, E′\left(\frac{\hat{i}}{\sqrt{2}} + \frac{\hat{j}}{\sqrt{2}}\right) \, \, \, = \, \frac{k 3 q}{\left(\frac{x}{\sqrt{2}}\right)^{2}}\left(\frac{\hat{i}}{\sqrt{2}} + \frac{\hat{j}}{\sqrt{2}}\right)$
$= \, \frac{6 k q}{x^{2}}\left(\frac{\hat{i}}{\sqrt{2}} + \frac{\hat{j}}{\sqrt{2}}\right) \, \, = \, \frac{3 \sqrt{2} k q}{x^{2}}\left(\right.\hat{i}+\hat{j}\left.\right)$