Thank you for reporting, we will resolve it shortly
Q.
The locus of the vertices of the family of parabola 6y=2a3x2+3a2x−12a is
Conic Sections
Solution:
Given, 6y=2a3x2+3a2x−12a...(1)
For a vertex of given equation, dydx=0 ∴6dydx=4a3x+3a2=0 ⇒a=−34x
Putting the value of a in (1), we get 6y=2(−34x)x2+3(−34x)2−12(−34x) ⇒6y=−2732x+2716x+364x ⇒192xy=−27+54+288 ⇒xy=315192 =10564