Let the point $P(x, y)$, such that $O P: A P=5: 7$,
where $O$ is the origin and $A(-2,-3),$ so
$\frac{\sqrt{x^{2}+y^{2}}}{\sqrt{(x+2)^{2}+(y+3)^{2}}}=\frac{5}{7}$
$\Rightarrow 49\left(x^{2}+y^{2}\right)=25\left[x^{2}+y^{2}+4 x+6 y+13\right]$
$\Rightarrow 24\left(x^{2}+y^{2}\right)-100 x-150 y-375=0$