Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The locus of the mid points of the chords of the standard hypererbola passing through a fixed point ( $\alpha$, $\beta)$, is

Conic Sections

Solution:

Use $T = S _1$ which gives $\frac{ xh }{ a ^2}-\frac{ ky }{ b ^2}=\frac{ h ^2}{ a ^2}-\frac{ k ^2}{ b ^2}$ passes through $(\alpha, \beta)$
$\Rightarrow \frac{\alpha h}{a^2}-\frac{k \beta}{b^2}=\frac{h^2}{a^2}-\frac{k^2}{b^2} \Rightarrow \frac{\left(x-\frac{\alpha}{2}\right)^2}{a^2}-\frac{\left(y-\frac{\beta}{2}\right)^2}{b^2}=\frac{1}{4}\left(\frac{\alpha^2}{a^2}+\frac{\beta^2}{b^2}\right) \Rightarrow C$