Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The locus of the centre of the circle described on any focal chord of the parabola $y^{2}=4ax$ as the diameter is

NTA AbhyasNTA Abhyas 2022

Solution:

Let, $P\left(a t_{1}^{2} , 2 a t_{1}\right)$ and $Q\left(a t_{2}^{2} , 2 a t_{2}\right)$ be the extremities of a focal chord $PQ$ of the parabola $y^{2}=4ax.$ Then, $t_{1}t_{2}=-1.$
Let, $\left(h , k\right)$ be the coordinates of the centre of the circle described on $PQ$ as diameter. Then,
$h=\frac{a}{2}\left(t_{1}^{2} + t_{2}^{2}\right)$ and $k=a\left(t_{1} + t_{2}\right)$
$\Rightarrow \frac{2 h}{a}=t_{1}^{2}+t_{2}^{2}$ and $\left(\frac{k}{a}\right)^{2}=\left(t_{1} + t_{2}\right)^{2}$
$\Rightarrow \frac{2 h}{a}=t_{1}^{2}+t_{2}^{2}$ and $\frac{k^{2}}{a^{2}}=t_{1}^{2}+t_{2}^{2}+2t_{1}t_{2}$
$\Rightarrow \frac{k^{2}}{a^{2}}=\frac{2 h}{a}-2$ $\left[\because t_{1} t_{2} = - 1\right]$
$\Rightarrow k^{2}=2a\left(h - a\right)$
Hence, the locus of $\left(h , k\right)$ is
$y^{2}=2a\left(x - a\right).$