Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The locus of point z satisfying operatornameRe( (1/z) )=k, where k is a non- zero real number, is:
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The locus of point $ z $ satisfying $ \operatorname{Re}\left( \frac{1}{z} \right)=k, $ where $ k $ is a non- zero real number, is:
KEAM
KEAM 2004
A
a straight line
B
a circle
C
an ellipse
D
a hyperbola
E
none of these
Solution:
Let $ z=x+iy, $ then $ \operatorname{Re}\left( \frac{1}{z} \right)=k $
$ \Rightarrow $ $ \operatorname{Re}\left( \frac{1}{x+iy} \right)=k $
$ \Rightarrow $ $ \operatorname{Re}\left( \frac{x}{{{x}^{2}}+{{y}^{2}}}-\frac{iy}{{{x}^{2}}+{{y}^{2}}} \right)=k $
$ \Rightarrow $ $ k=\frac{x}{{{x}^{2}}+{{y}^{2}}} $
$ \Rightarrow $ $ {{x}^{2}}+{{y}^{2}}-\frac{1}{k}x=0 $
which is an equation of circle.