Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The linear velocity of a rotating body is given by $\overrightarrow{ v }=\vec{\omega} \times \overrightarrow{ r }$ . The angular velocity of body is $\vec{\omega}=5 \hat{ i }-4 \hat{ j }+9 \hat{ k }$ and the radius vector $\overrightarrow{ r }=8 \hat{ i }-6 \hat{ j }+3 \hat{ k }$ then $|\overrightarrow{ V }|$ is:

Motion in a Plane

Solution:

As, $\overrightarrow{ V }=\vec{\omega} \times \overrightarrow{ r },$ then
$\vec{V}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{ k } \\ 5 & -4 & +9 \\ 8 & -6 & 3\end{array}\right|$
$\overrightarrow{ V }=\hat{ i }(-12-(-54)-\hat{ j }(15-72)+\hat{ k }(-30-(-32)))$
$\overrightarrow{ V }=42 \hat{ i }-57 \hat{ j }+2 \hat{ k }$
$|\overrightarrow{ V }|=\sqrt{(42)^{2}+(57)^{2}+(2)^{2}}$
$|\overrightarrow{ V }|=\sqrt{5017}=70.8\,$ unit