Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The linear mass density $(\lambda)$ of a rod of length $L$ kept along $x$-axis varies as $\lambda=\alpha+\beta x$; where $\alpha$ and $\beta$ are positive constants. The centre of mass of the rod is at

System of Particles and Rotational Motion

Solution:

$\lambda=\alpha+\beta x$
$d m=(\alpha+\beta x) d x$
$x_{c m}=\frac{\int\limits_{0}^{L} x(\alpha+\beta x) d x}{\int\limits_{0}^{L}(\alpha+\beta x) d x}$
$=\frac{\alpha \int\limits_{0}^{L} x d x+\beta \int\limits_{0}^{L} x^{2} d x}{\alpha \int\limits_{0}^{L} d x+\beta \int\limits_{0}^{L} x d x}$
$x_{c m}=\frac{\frac{\alpha L^{2}}{2}+\frac{\beta L^{3}}{3}}{\alpha L+\frac{\beta L^{2}}{2}}$