Q. The line $y=m x-\frac{\left(a^{2}-b^{2}\right) m}{\sqrt{a^{2}+b^{2} m^{2}}}$ is normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ for all values of $m$ belonging to
Conic Sections
Solution:
Solution: