Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The line $x = at^2$ meets the ellipse $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ in the real points, if

UPSEEUPSEE 2014

Solution:

Putting $x=a t^{2}$ in $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we get
$t^{4}+\frac{y^{2}}{b^{2}} =1$
$i.e.,y^{2} =b^{2}\left(1-t^{4}\right)$
$=b^{2}\left(1+t^{2}\right)\left(1-t^{2}\right)$
$y$ is real, if $1-t^{2} \geq 0$ i.e., $|t| \leq 1$