Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The line $ (x-2)\cos \beta +(y-2)\sin \theta =1 $ touches a circle for all value of $ \theta , $ then the equation of circle is

Bihar CECEBihar CECE 2013

Solution:

Give line is
$(x-2) \cos \theta+(y-2) \sin \theta=1=\cos ^{2} \theta+\sin ^{2} \theta$ On
comparing we get,
$x-2 \cos \theta \ldots$..(i)
$y-2=\sin \theta \ldots$...(ii)
and On squaring and then adding Eqs. (i) and (ii), we get
$(x-2)^{2}+(y-2)^{2}=\cos ^{2} \theta+\sin ^{2} \theta$
$\Rightarrow (x-2)^{2}+(y-2)^{2}=1 $
$\Rightarrow x^{2}+y^{2}-4 x-4 y+7=0$