Q. The line of shortest distance between the lines $ \frac{x-2}{0}=\frac{y-1}{1}=\frac{z}{1} $ and $\frac{x-3}{2}=\frac{y-5}{2}=\frac{z-1}{1}$ makes an angle of $\cos ^{-1}$ $\left(\sqrt{\frac{2}{27}}\right)$ with the plane $P: a x-y-z=0$, $(a>0)$. If the image of the point $(1,1,-5)$ in the plane $P$ is $(\alpha, \beta, \gamma)$, then $\alpha+\beta-\gamma$ is equal to ______
Solution: