Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The line $ax + by = 1$ cuts ellipse $cx^2 + dy^2 = 1$ only once if

BITSATBITSAT 2010

Solution:

Clearly $a x+b y=1$
i.e $y=-\frac{a}{b} x+\frac{1}{b}$ is tangent to
$c x^{2}+d y^{2}=1$
$\Rightarrow \frac{x^{2}}{\frac{1}{c}}+\frac{y^{2}}{\frac{1}{d}}=1$
$\therefore \left(\frac{1}{b}\right)^{2}=\left(\frac{1}{c}\right)\left(-\frac{a}{b}\right)^{2}+\left(\frac{1}{d}\right)$
$\Rightarrow 1=\frac{a^{2}}{c}+\frac{b^{2}}{d}$