Thank you for reporting, we will resolve it shortly
Q.
The length of the tangent drawn from any point on the circle $x^{2}+y^{2}+2 g x+2 f y +c_{1}=0$ to the circle $x^{2}+y^{2}+2 g x+2 f y+ c_{2}=0$ is_____
Circles are
$C_{1} \equiv x^{2}+y^{2}+2 g x+2 f y +c_{1}=0$
and $C_{2} \equiv x^{2}+y^{2}+2 g x+2 f y+ c_{2}=0$
Clearly circles are concentric,
Cleariy, length of tangent is
$AT =\sqrt{ AO ^{2}- OT ^{2}}=\sqrt{r_{1}{ }^{2}-r_{2}{ }^{2}}$
$=\sqrt{\left(g^{2}+f^{2}-c_{1}\right)-\left(g^{2}+f^{2}-c_{2}\right)}$
$=\sqrt{c_{2}-c_{1}}$