Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The length of the sub tangent at $'t'$ on the curve $x = a (t + \sin \, t), y = a (1 - \cos \, t)$ is

KCETKCET 2009Application of Derivatives

Solution:

Given, $x=a(t+\sin t), y=a(1-\cos t)$
$\Rightarrow \frac{d x}{d t}=a(1+\cos t), \frac{d y}{d t}=a(\sin t)$
$\therefore \frac{d y}{d x}=\frac{a \sin t}{a(1+\cos t)}=\tan \frac{t}{2}$
$\therefore $ Length of subtangent $=\frac{y}{d y / d x}$
$=\frac{a(1-\cos t)}{\tan \frac{t}{2}}$
$=2 a \sin \frac{t}{2} \cos \frac{t}{2}$
$=a \sin t$