Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The length of the latus rectum of the parabola $bx^2 - 4ay + dx + e = 0$ is

COMEDKCOMEDK 2010Conic Sections

Solution:

$bx^2 - 4ay + dx + e = 0$
$\Rightarrow x^{2} +\frac{dx}{b} + \frac{d^{2}}{4b^{2}} - \frac{d^{2}}{4b^{2}} = \frac{4ay}{b} - \frac{e}{b} $
$ \Rightarrow \left(x+ \frac{d}{2b}\right)^{2} = \frac{4ay}{b} + \frac{d^{2}}{4b^{2}} - \frac{e}{b} $
$= \frac{4a}{b} \left[y + \frac{d^{2}}{16 \,ab} - \frac{e}{4a}\right]$
On comparing with general equation of parabola $(X + x)^2 = 4a(Y + y)$, we have
Length of latus rectum $ = \frac{4a}{b} $