Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The least distance of the point $Q(0,-2)$ from the point $P(x, y)$ where $y=\frac{16}{\sqrt{3} x^3}-2$ and $x>0$ is

Application of Derivatives

Solution:

$ P Q=\sqrt{x^2+\left(\frac{16}{\sqrt{3} x^3}\right)^2} $
$\Rightarrow P Q=\sqrt{x^2+\frac{256}{3 x^6}}$
$\text { A.M. } \geq \text { G.M. }$
$\frac{\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{256}{3 x^6}}{4} \geq\left(\frac{x^6 \cdot 256}{3^4 \cdot x^6}\right)^{\frac{1}{4}} .$
$\Rightarrow P Q_{\min }=\frac{4}{\sqrt{3}} $