Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The kinetic energy of the electron is $E$ when the incident wavelength is $\lambda .$ To increase the $K . E$. of the electron to $2 E$, the incident wavelength must be

Dual Nature of Radiation and Matter

Solution:

$ \frac{h c}{\lambda}=W+E$
where $E$ is the kinetic energy
$\frac{h c}{\lambda^{\prime}}=W+(2 E) \Rightarrow h c\left[\frac{1}{\lambda^{\prime}}-\frac{1}{\lambda}\right]=E$
$\frac{1}{\lambda^{\prime}}=\frac{E}{h c}+\frac{1}{\lambda}=\frac{E \lambda+h c}{h c \lambda} \Rightarrow \lambda^{\prime}=\frac{h c \cdot \lambda}{E \lambda+h c}$