Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The inverse of the function
$y = \frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}}$ is

Relations and Functions - Part 2

Solution:

$y = \frac{ t - \frac{1}{t}}{1 + \frac{1}{t}}$ where $t = e^{2x}$
$\therefore y (t^2 + 1) = t^2 - 1$
$\Rightarrow t^2 = \frac{1 + y}{1 - y}$
$\Rightarrow (e^{2x})^2 = \frac {1 + y}{1 - y} (\because t = e^{2x})$
$\Rightarrow e^{4x} = \frac{1 + y}{ 1 - y} $
$\Rightarrow 4x\, log_e e = log_e (\frac{1 + y}{1 - y})$
$\Rightarrow x = \frac{1}{4} log_e(\frac{1 + y}{ 1 -y})$
$\therefore f^{-1}(y) = \frac{1}{4} log_e (\frac{1 + y}{1 - y})$
$\therefore f^{-1} (x) = \frac{1}{4} log_e(\frac{1 + x}{1 - x}) = p(x) $(say)
$\therefore p(-x) = -p(x)$
$\therefore f^{-1}(-x) = -f^{-1} (x)$
which is an odd function.