Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The inverse of the function $y = \frac{2^x}{1+2^x}$ us :

UPSEEUPSEE 2017

Solution:

Given,
$y=\frac{2^{x}}{1+2^{x}}$
$ \Rightarrow \,y+2^{x} y=2^{x} $
$\Rightarrow \, y=2^{x}(1-y)$
$ \Rightarrow \, 2^{x}=\frac{y}{1-y}$
Taking log both side at base 2, we get
$\log _{2}\left(2^{x}\right)=\log _{2} \frac{y}{1-y}$
$\Rightarrow \, x \, =\log _{2} \frac{y}{1-y} $
$\therefore $ Inverse $ =\log _{2} \frac{y}{1-y}$