Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The inverse of the function $y=\frac{10^{x}-10^{-x}}{10^{x}+10^{-x}}$ is

Relations and Functions - Part 2

Solution:

Since, $y=\frac{10^{2x}-1}{10^{2x}+1}$
$\Rightarrow y10^{2x}+y = 10^{2x}-1$
$\Rightarrow 10^{2x}=\frac{1+y}{1-y}$
$\therefore 2x\,log_{10}\,10=log_{10}\, \frac{1+y}{1-y}$
$\Rightarrow x=\frac{1}{2} log_{10}\left(\frac{1+y}{1-y}\right) \left(\because log_{a}\,a=1\right)$
Hence, the inverse of $y$ is $\frac{1}{2}log_{10}\left(\frac{1+x}{1-x}\right)$.