Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The inverse of $f \left(x\right)= \frac{2}{3} \frac{10^{x}-10^{-x}}{10^{x}+ 10^{-x}}$ is

Relations and Functions - Part 2

Solution:

If $y = \frac{2}{3} \frac{10^{x}-10^{-x}}{10^{x}+ 10^{-x}}, \quad10^{2x} = \frac{3y+2}{2-y}$
or $x = \frac{1}{2}\,log_{10} \frac{2+3y}{2-3y} \therefore f^{-1} \left(x\right) = \frac{1}{2}\,log_{10} \frac{2+3x}{2-3x}.$