Thank you for reporting, we will resolve it shortly
Q.
The inverse of a skew-symmetric matrix
of odd order is
Matrices
Solution:
Let $A$ be a skew-symmetric, matrix of order $n$. By definition
$A^{\prime}=-A $
$\Rightarrow \left|A^{\prime}\right|=|-A| \Rightarrow|A|=(-1)^n|A|$
$\Rightarrow |A|=-|A| [\because n \text { is odd }]$
$\Rightarrow 2|A|=0 \Rightarrow |A|=0$
$\therefore A^{-1} \text { does not exist. }$