Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The interference pattern is obtained with two coherent light sources of intensity ratio n. In the interference pattern, the ratio $\frac{I_{max} - I_{min}}{I_{max} + I_{min}}$ will be

NEETNEET 2016Wave Optics

Solution:

$I_{\max} = \left(\sqrt{I} + \sqrt{nI}\right)^{2}$
$ I_{\min} = \left(\sqrt{I} - \sqrt{nI}\right)^{2} $
$\frac{I_{\max}- I_{\min}}{I_{\max} + I_{\min}} = \frac{\left(\sqrt{I} + \sqrt{nI}\right)^{2} - \left(\sqrt{I} - \sqrt{nI}\right)^{2}}{\left(\sqrt{I} + \sqrt{nI}\right)^{2} + \left(\sqrt{I} - \sqrt{nI}\right)^{2}} $
$ = \frac{1+n+2\sqrt{n} - 1 - n+2\sqrt{n}}{1+n+2\sqrt{n} +1+n-2\sqrt{n}} = \frac{4\sqrt{n}}{2+2n} = \frac{2\sqrt{n}}{1+n} $