Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The integrating factor of the differential equation $ (y\log y)dx=(\log y-x)dy $ is

KEAMKEAM 2009Differential Equations

Solution:

Given differential equation can be rewritten as $ \frac{dx}{dy}=\frac{(\log y-x)}{y\log y} $
$ \Rightarrow $ $ \frac{dx}{dy}+\frac{x}{y\log y}=\frac{1}{y} $
$ \therefore $ $ IF={{e}^{\int{\frac{1}{y\log y}}dy}} $
$={{e}^{\log \log y}}=\log y $