Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The integral ∫ sin 3x cos 3x dx is equal to
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The integral $ \int{{{\sin }^{3}}x}{{\cos }^{3}}x\,dx $ is equal to
Jamia
Jamia 2010
A
$ \frac{1}{32}\left[ -\frac{3}{2}\cos 2x+\frac{1}{6}\cos 6x \right]+c $
B
$ \frac{1}{32}\left[ -\frac{3}{2}\sin 2x+\frac{1}{6}\sin 6x \right]+c $
C
$ -\frac{1}{32}\left[ -\frac{3}{2}\cos 2x+\frac{1}{6}\sin 6x \right]+c $
D
None of the above
Solution:
$ \int{{{\sin }^{3}}x{{\cos }^{3}}x}dx $ $ =\frac{1}{8}\int{{{(2\sin x\cos x)}^{3}}}dx $ $ =\frac{1}{8}\int{{{\sin }^{3}}2x}dx $ $ =\frac{1}{8}\int{\left[ \frac{3\sin 2x-\sin 6x}{4} \right]}dx $ $ [\because \sin 3x=3\sin x-4{{\sin }^{3}}x $ $ \Rightarrow $ $ {{\sin }^{3}}x=\frac{3\sin x-\sin 3x}{4}] $ $ =\frac{1}{32}[3\int{\sin 2xdx-\int{\sin 6x\,dx}}] $ $ =\frac{1}{32}\left[ -\frac{3}{2}\cos 2x+\frac{1}{6}\cos 6x \right]+c $