Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The integral ∫ limits(π/4)(π/12) (8 cos 2x/( tan x + cot x)3) dx equals :
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The integral $\int\limits^{\frac{\pi}{4}}_{\frac{\pi}{12}} \frac{8 \cos 2x}{\left(\tan x + \cot x\right)^{3}} dx $ equals :
JEE Main
JEE Main 2017
Integrals
A
$\frac{15}{128}$
61%
B
$\frac{15}{64}$
21%
C
$\frac{13}{32}$
8%
D
$\frac{13}{256}$
10%
Solution:
$\int\limits^{\frac{\pi}{4}}_{\frac{\pi}{12}}$$\frac{cos 2x}{\left(\frac{1}{sin 2x}\right)^{3}} = $$\int\limits^{\frac{\pi}{4}}_{\frac{\pi}{12}}$$ cos \,2x \times sin\, 2x.sin^{2}\, \left(2x\right) \,dx$
$= \frac{1}{4}\int sin 4x.\left(1-cos 4x\right)dx$
$= \frac{1}{4}$$\int\limits^{\frac{\pi}{4}}_{\frac{\pi}{12}}$ sin 4x - $\int\limits^{\frac{\pi}{4}}_{\frac{\pi}{12}}$ sin 8x