Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The integral $\int\limits_0^{\frac{\pi}{2}} \frac{1}{3+2 \sin x+\cos x} d x$ is equal to:

JEE MainJEE Main 2022Integrals

Solution:

$I=\int\limits_0^{\frac{\pi}{2}} \frac{d x}{3+2 \sin x+\cos x}=\int\limits_0^{\frac{\pi}{2}} \frac{\sec ^2 \frac{x}{2} \cdot d x}{2 \tan ^2 \frac{x}{2}+4 \tan \frac{x}{2}+4}$
Put $\tan \frac{x}{2}=t$, so
$I=\int\limits_0^1 \frac{d t}{(t+1)^2+1}=\left.\tan ^{-1}(x+1)\right|_0 ^1=\tan ^{-1} 2-\frac{\pi}{4}$