Q. The integral $I=\int \frac{e^{\sqrt{x}} cos \left(e^{\sqrt{x}}\right)}{\sqrt{x}}dx$ $=f\left(x\right)+c$ (where, $c$ is the constant of integration) and $f\left(l n \left(\frac{\pi }{4}\right)\right)^{2}=\sqrt{2}$ . Then, the number of solutions of $f\left(x\right)=2e\left(\forall x \in R - \left\{0\right\}\right)$ is equal to
NTA AbhyasNTA Abhyas 2022
Solution: