Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The integer 'k', for which the inequality $x^{2}-2(3 k-1) x+8 k^{2}-7>0$ is valid for every $x$ in $R ,$ is :

JEE MainJEE Main 2021Complex Numbers and Quadratic Equations

Solution:

$x ^{2}-2(3 K -1) x +8 K ^{2}-7>0$
Now, $D <0$
$\Rightarrow 4(3 K -1)^{2}-4 \times 1 \times\left(8 K ^{2}-7\right)<0$
$\Rightarrow 9 K ^{2}-6 K +1-8 K ^{2}+7<0$
$\Rightarrow K ^{2}-6 K +8<0$
$\Rightarrow ( K -4)( K -2)<0$
$\Rightarrow K \in(2,4)$