Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The inequality $\_{}^{n + 1}C _{6} + \_{}^{n}C _{4} > \_{}^{n + 2}C _{5} - \_{}^{n}C _{5}$ holds true for all $n$ greater than

NTA AbhyasNTA Abhyas 2020Permutations and Combinations

Solution:

$\_{}^{n + 1}C_{6}+\_{}^{n}C_{4}+\_{}^{n}C_{5}>\_{}^{n + 2}C_{5}$
$\Rightarrow \_{}^{n + 1}C_{6}+\_{}^{n + 1}C_{5}>\_{}^{n + 2}C_{5}$
$\Rightarrow \_{}^{n + 2}C_{6}>\_{}^{n + 2}C_{5}$
$\Rightarrow \frac{\left(n + 2\right) !}{6 ! \left(n - 4\right) !}>\frac{\left(n + 2\right) !}{5 ! \left(n - 3\right) !}$
$\Rightarrow \frac{1}{6}>\frac{1}{\left(n - 3\right)}$
$\Rightarrow n-3>6$
$\Rightarrow n>9$